Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Comput Struct Biotechnol J ; 20: 5256-5263, 2022.
Article in English | MEDLINE | ID: covidwho-2061047

ABSTRACT

Over the past decade, our understanding of human diseases has rapidly grown from the rise of single-cell spatial biology. While conventional tissue imaging has focused on visualizing morphological features, the development of multiplex tissue imaging from fluorescence-based methods to DNA- and mass cytometry-based methods has allowed visualization of over 60 markers on a single tissue section. The advancement of spatial biology with a single-cell resolution has enabled the visualization of cell-cell interactions and the tissue microenvironment, a crucial part to understanding the mechanisms underlying pathogenesis. Alongside the development of extensive marker panels which can distinguish distinct cell phenotypes, multiplex tissue imaging has facilitated the analysis of high dimensional data to identify novel biomarkers and therapeutic targets, while considering the spatial context of the cellular environment. This mini-review provides an overview of the recent advancements in multiplex imaging technologies and examines how these methods have been used in exploring pathogenesis and biomarker discovery in cancer, autoimmune and infectious diseases.

2.
Stud Health Technol Inform ; 296: 58-65, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-2022597

ABSTRACT

Within the scope of the two NUM projects CODEX and RACOON we developed a preliminary technical concept for documenting clinical and radiological COVID-19 data in a collaborative approach and its preceding findings of a requirement analysis. At first, we provide an overview of NUM and its two projects CODEX and RACOON including the GECCO data set. Furthermore, we demonstrate the foundation for the increased collaboration of both projects, which was additionally supported by a survey conducted at University Hospital Frankfurt. Based on the survey results mint Lesion™, developed by Mint Medical and used at all project sites within RACOON, was selected as the "Electronic Data Capture" (EDC) system for CODEX. Moreover, to avoid duplicate entry of GECCO data into both EDC systems, an early effort was made to consider a collaborative and efficient technical approach to reduce the workload for the medical documentalists. As a first effort we present a preliminary technical concept representing the current and possible future data workflow of CODEX and RACOON. This concept includes a software component to synchronize GECCO data sets between the two EDC systems using the HL7 FHIR standard. Our first approach of a collaborative use of an EDC system and its medical documentalists could be beneficial in combination with the presented synchronization component for all participating project sites of CODEX and RACOON with regard to an overall reduced documentation workload.


Subject(s)
COVID-19 , Animals , Documentation , Humans , Raccoons , Radiography , Workflow
3.
Reference Module in Food Science ; 2023.
Article in English | ScienceDirect | ID: covidwho-2003773

ABSTRACT

International agri-food trade has grown significantly over recent decades with food and socio-economic security in many countries increasingly reliant on safe and efficient import and export regulation that are harmonized with international standards. This Article explores outputs of the Codex Alimentarius Commission, particularly the Committee on Food Import and Export Inspection and Certification Systems, in facilitating trade in safe food, their importance to World Trade Organization, trade agreements and disputes, and opportunities to assist countries harmonize with Codex norms. Challenges to trade in safe food, the rise in E-commerce and food fraud, and the impact of the COVID-19 pandemic, are also discussed, as is the utility of digital technologies to address these challenges.

5.
Toxicol Rep ; 8: 785-792, 2021.
Article in English | MEDLINE | ID: covidwho-1164542

ABSTRACT

Alcohol-based hand rubs (ABHRs) formulated with technical-grade ethanol were temporarily permitted in Canada and the U.S beginning April 2020 to meet the current demand due to COVID-19. ABHRs formulated with technical-grade ethanol are low risk for general use. In this review, we discuss the toxicity of common contaminants found in technical-grade ethanol, as well as contaminants that may have been introduced into the products during formulation and packaging of ABHRs. Although primary route of exposure is via dermal absorption and inhalation, there have been reported elevated concerns regarding to ingestion of ABHRs. Overall, the highest risks were associated with methanol (for its toxicity), ethyl acetate (skin defattening), and acetaldehyde (carcinogenic and teratogenic). For these reasons Health Canada and the United States Food and Drug Administration have issued recalls on products containing some of these contaminants. More vigilant policing by regulatory agencies and general product users are required to ensure compliance, safety, and efficacy of these new products, as demand continue to rise during this unprecedented pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL